WHAT IS A MARKOV PROCESS?
Many natural systems can have their behavior described
nicely as a series of states. For example: Insects are born in an ‘inside an
egg’ state. Eventually most will transition to a ‘gross mucus-y larvae’ state, followed
by an ‘annoying flying thing’ state, and ending in a ‘dead’ state. If we know
the series of states and the order they occur in, we can represent the process
as a chain of states, called a Markov chain:
The numbers on each transition represent the probability of
an insect in the previous state going to the next state at the next time step.
We know there’s random variation between insects in a species, so we can
represent the variations by having different transitions an insect might make with different probabilities. The time step will
be some discrete unit that you choose based on the context. For an insect with a short
life span, a useful time step might be about an hour. So if we have 200 eggs of
insects whose life cycles are represented by the above chain, 100 of them will hatch
within an hour, and 50 will hatch in the second hour.
The crucial thing about this process is that the only thing
we need to know to predict the likelihood of an insect transitioning into a
particular next state is the current state. This property of a process is
called the Markov property, and any random process that adheres
to it is a Markov process.
When I first started looking into Markov processes, I was
confused about why Markov models limited themselves to the Markov property. Why
not just say that we can take other factors into account than the current
state, such as previous states or external variables (like, for the insects, an
external variable could be seasons; they aren’t expressed in the insect’s
state, but they affect their life cycles)? Couldn't we then describe many more
processes with Markov-like models, and much more accurately? Well, we could.
But the beauty of a Markov model is its ability to describe many different
things that occur in nature even though it’s very simple. This simplicity makes
data from Markov processes much easier to manipulate. A good example of cool
things you can do when you assume the Markov property is use of the Viterbi algorithm, which I will post about later.
Markov models can't account for wasps' likelihood of death increasing as they get closer to me and my vaccuum cleaner. |
YAY, ANOTHER EXAMPLE
The above chain is very simple, because we know that insects
basically always go from the first to the last state in order. But what if they
didn’t? What if there were a species of insect that could sometimes go back
into their eggs, or sometimes hatched already in the flying stage? I would find
that deeply alarming, but we can still represent it with a Markov chain by adding in
arrows for the new transition possibilities:
Here are a couple of things that can be inferred from the above
Markov chain:
- Half of the insects hatch out of their eggs into larvae, while the other half go directly to the flying state. If we have one of the eggs, there is a 50% chance it will hatch into a larva.
- Eighty percent of the larvae will turn into flying things, and ten percent (presumably the losers) will go back into their egg for a while instead of getting on with their lives.
- After the insects die five percent of them rise again, returning to the flying state as zombies.
It’s also good to note that the time period expressed by the
Markov chain doesn’t really ‘end’. So, it’s not that 5% of the above insects return to the flying state and then
after that they definitely die; any insect in the dead state has a 5% chance
of zombification at the next state, no matter how many times they have been dead before. Since
there’s no alternative dead state whose only outgoing arrow loops with itself
(as in the previous example) these insects can’t be truly killed. I hope
you can now appreciate the seriousness of Markov processes.
Having understood his species' Markov chain, he rejoices in his immortality. |
Bonus links!
- Some good Markov questions on Mathematics Stack Exchange.
- A much better but more mathier description of Markov processes.
- The very not awful program I used to make the chain diagrams.
Cool post. Now even I know the how the process works that creates zombie insects... I actually think I spotted a few of those in my garden, but was too afraid to mention it, 'cause it will just freak out my wife and friends.
ReplyDeleteHaha thanks very much! Now nobody can say that Markov processes don't have real-world applications.
Delete